Diversity Management in MIMO-OFDM Systems
نویسندگان
چکیده
Over the last decade, a large degree of consensus has been reached within the research community regarding the physical layer design that should underpin state-of-the-art and future wireless systems (e.g., IEEE 802.11a/g/n, IEEE 802.16e/m, 3GPP-LTE, LTE-Advanced). In particular, it has been found that the combination of multicarrier transmission and multiple-input multiple-output (MIMO) antenna technology leads to systems with high spectral efficiency while remaining very robust against the hostile wireless channel environment. The vast majority of contemporary wireless systems combat the severe frequency selectivity of the radio channel using orthogonal frequency diversity multiplexing (OFDM) or some of its variants. The theoretical principles of OFDM can be traced back to (Weinstein & Ebert, 1971), however, implementation difficulties delayed the widespread use of this technique well until the late 80s (Cimini Jr., 1985). It is well-known that the combination of OFDM transmission with channel coding and interleaving results in significant improvements from an error rate point of view thanks to the exploitation of the channel frequency diversity (Haykin, 2001, Ch. 6). Further combination with spatial processing using one of the available MIMO techniques gives rise to a powerful architecture, MIMO-OFDM, able to exploit the various diversity degrees of freedom the wireless channel has to offer (Stuber et al., 2004).
منابع مشابه
Single-Carrier Frequency-Domain Equalization for Orthogonal STBC over Frequency-Selective MIMO-PLC channels
In this paper we propose a new space diversity scheme for broadband PLC systems using orthogonal space-time block coding (OSTBC) transmission combined with single-carrier frequency-domain equalization (SC-FDE). To apply this diversity technique to PLC channels, we first propose a new technique for combining SC-FDE with OSTBCs applicable to all dispersive multipath channels impaired by impulsive...
متن کاملCooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel
In this paper, a cooperative algorithm to improve the orthogonal space-timefrequency block codes (OSTFBC) in frequency selective channels for 2*1, 2*2, 4*1, 4*2 MIMO-OFDM systems, is presented. The algorithm of three node, a source node, a relay node and a destination node is formed, and is implemented in two stages. During the first stage, the destination and the relay antennas receive the sym...
متن کاملSelective Tone Reservation method for PAPR reduction in SFBC-OFDM systems
The high Peak to Average Power Ratio (PAPR) of Orthogonal Frequency Division Multiplexing (OFDM) and MIMO-OFDM systems reduces the system efficiency. In this paper, an extension of Tone Reservation (TR) method is introduced for PAPR reduction in Space Frequency Block Coded OFDM (SFBC-OFDM) systems. The proposed algorithm is based on a time domain kernel which is added to the signal of the anten...
متن کاملLow Complexity Post-Coded MIMO OFDM Systems: Design and Performance Analysis
This paper discuss the Low Complexity Post-Coded MIMO OFDM (PC-MIMO OFDM) Systems: Design and performance analysis. The signal is propagating from the transmitter to receiver along number of different paths, referred as multipath in wireless environment. Path loss, macroscopic fading and microscopic fading are propagating signal power drops. Orthogonal Frequency Division Multiplexing (OFDM) pro...
متن کاملDiversity Analysis of Space-Time-Frequency Coded Broadband OFDM Systems
Multi-antenna communication systems with OFDM modulation have the potential to play an important role in the design of the next generation broadband wireless communication systems. In this paper, we propose a general framework for the performance analysis of space-timefrequency coded MIMO-OFDM systems. Our approach incorporates the space-time and space-frequency coding approaches as special cas...
متن کامل